对于犯罪检测、网络入侵检测等应用,离群点检测是数据挖掘的一种重要算法.局部离群因子是对数据对象离群点的程度定义,计算所有数据对象局部离群因子需要大量计算. 一种基于聚类分析局部离群点挖掘改进算法得以实现,此改进算法以聚类分析为预处理,只对聚类之外的数据对象计算局部离群因子,避免了大量计算,并改进了对数据对象k距离邻域的求解.通过仿真数据和轨道交通AFC(automatic fare collecting system)客流数据的实验,证实此改进算法不仅能更高效地挖掘出值得关注的离群点,而且还能更好地达到解析目的.