基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
网络流量受众多因素的影响并且具有复杂的非线性特点,因此网络流量的预测和分析是一个很复杂的问题,最小二乘支持向量机能够成功地解决非线性问题并应用于网络流量的预测和分析.提出一种最小二乘支持向量机模型,将自适应遗传算法用于最小二乘支持向量机参数寻优,并将该模型用于网络流量的预测和分析.对比实验表明,基于最小二乘支持向量机的网络预测模型具有更强的预测能力,在网络流量预测中有一定的实用价值.经实例验证,该模型预测精度高.
推荐文章
融合小波变换与贝叶斯LS-SVM的网络流量预测
网络流量预测
小波变换
支持向量机
最小二乘支持向量机
贝叶斯框架
遗传算法优化支持向量机的网络流量混沌预测
遗传算法优化
支持向量机
网络流量
混沌预测
相空间重构
预测模型
自适应网络流量线性预测算法及应用
网络流量
线性预测
流量模型
基于微粒群算法的LS-SVM时间序列预测
支持向量机
微粒群算法
时间序列预测
超平面空间
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自适应遗传算法LS-SVM的网络流量预测
来源期刊 计算机应用与软件 学科 工学
关键词 自适应遗传算法 最小二乘支持向量机 网络流量预测
年,卷(期) 2010,(11) 所属期刊栏目
研究方向 页码范围 220-222
页数 分类号 TP3
字数 3121字 语种 中文
DOI 10.3969/j.issn.1000-386X.2010.11.069
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈虹 扬州大学能源与动力学院 78 581 13.0 19.0
2 靳召东 扬州大学信息工程学院 3 31 3.0 3.0
3 张钲浩 扬州大学能源与动力学院 3 31 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (164)
参考文献  (6)
节点文献
引证文献  (3)
同被引文献  (10)
二级引证文献  (8)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2014(4)
  • 引证文献(0)
  • 二级引证文献(4)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
自适应遗传算法
最小二乘支持向量机
网络流量预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导