作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的文本分类方法需要大量的已知类别样本来得到一个好的文本分类器,然而在现实的文本分类应用过程中,大量的已知类别样本通常很难获得,因此如何利用少量的已知类别样本和大量的未知类别样本来获得比较好的分类效果成为一个热门的研究课题.本文为此提出了一种扩大已知类别样本集的新方法,该方法先从已知类别样本集中提取出每个类别的代表特征,然后根据代表特征从未知类别样本集中寻找相似样本加入已知类别样本集.实验证明,该方法能有效地提高分类效果.
推荐文章
半监督学习在不平衡样本集分类中的应用研究
不平衡样本集
半监督协同分类方法
分类器差异性
分类模型
桥梁结构健康数据
基于特征关系依赖网络的小样本学习方法
深度学习
小样本学习
度量学习
特征优化
原型调整
浮空器主缆绳表面的小样本学习缺陷检测研究
缺陷检测
小样本学习
度量学习
浮空器
基于半监督学习的最大间距准则人脸识别
半监督学习
最大间距准则
人脸识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 寻找相似样本的小样本半监督学习
来源期刊 计算机工程与科学 学科 工学
关键词 文本分类 代表特征 相似样本
年,卷(期) 2010,(9) 所属期刊栏目
研究方向 页码范围 127-129
页数 分类号 TP18
字数 3085字 语种 中文
DOI 10.3969/j.issn.1007-130X.2010.09.033
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨燕 西南交通大学信息科学与技术学院 97 1192 16.0 32.0
2 秦飞 西南交通大学信息科学与技术学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
文本分类
代表特征
相似样本
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导