基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机是在统计学习理论的VC维理论和结构风险最小化原则的基础上提出的一种新的模式识别技术,本文对于当前常用支持向量机的几种算法进行了总结和分析,对于今后提出更精确的方法做了充分的准备.
推荐文章
支持向量机算法及应用
统计学习理论
支持向量机
模式识别
时间序列预测
电力系统
支持向量机训练算法综述
支持向量机
训练算法
统计学习理论
核PCA支持向量机算法研究
核函数
核主元分析
支持向量机
分类
加权支持向量机求解路径算法研究
求解路径
支持向量回归
加权系数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 常用支持向量机算法分析
来源期刊 数字技术与应用 学科 工学
关键词 支持向量机 机器学习 模式识别
年,卷(期) 2010,(6) 所属期刊栏目
研究方向 页码范围 150
页数 分类号 TP391
字数 2235字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姚兆 20 27 3.0 5.0
2 陈喜龙 12 40 3.0 6.0
3 黄丹丹 4 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
机器学习
模式识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数字技术与应用
月刊
1007-9416
12-1369/TN
16开
天津市
6-251
1983
chi
出版文献量(篇)
20434
总下载数(次)
106
总被引数(次)
35701
论文1v1指导