基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在文本分类中,特征空间维数通常高达几万,甚至远远超出训练样本的个数,这是一种十分普遍的现象.为了提高文本挖掘算法的运行速度,降低占用的内存空间,提出了一种基于优化的模拟退火算法的特征选择方法.在该方法中,为避免遗失当前最优解,增加了记忆功能,将当前最好的状态记忆下来,从而使得模拟退火算法成为一种智能化算法;设计了一个自适应温度更新函数,并设置双阈值使得在尽量保持最优性的前提下减少计算量,从而较快地获得较具代表性的特征子集.实验结果表明该方法是有效的.
推荐文章
模拟退火教学式优化算法
教学式优化算法
模拟退火算法
局部最优
组合优化
基于模拟退火高斯扰动的蝙蝠优化算法
蝙蝠算法
模拟退火
高斯扰动
仿真
优化
模拟退火算法中的退火策略研究
模拟退火算法
退火策略
优化
MATLAB
基于模拟退火遗传算法的RBF网络的优化
径向基函数网络
遗传算法
参数优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 使用优化模拟退火算法的文本特征选择
来源期刊 计算机工程与应用 学科 工学
关键词 文本分类 特征空间 特征选择 模拟退火算法
年,卷(期) 2010,(4) 所属期刊栏目 博士论坛
研究方向 页码范围 8-11
页数 4页 分类号 TP301
字数 5192字 语种 中文
DOI 10.3778/j.issn.1002-8331.2010.04.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 钟勇 中国科学院成都计算机应用研究所 96 776 17.0 24.0
5 朱颢东 中国科学院成都计算机应用研究所 36 169 8.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (327)
参考文献  (7)
节点文献
引证文献  (13)
同被引文献  (19)
二级引证文献  (16)
1953(1)
  • 参考文献(1)
  • 二级参考文献(0)
1983(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(11)
  • 参考文献(0)
  • 二级参考文献(11)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(8)
  • 参考文献(0)
  • 二级参考文献(8)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(10)
  • 引证文献(0)
  • 二级引证文献(10)
2020(6)
  • 引证文献(0)
  • 二级引证文献(6)
研究主题发展历程
节点文献
文本分类
特征空间
特征选择
模拟退火算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导