原文服务方: 湖南大学学报(自然科学版)       
摘要:
当训练数据和测试数据来自不同的领域或任务以至于训练数据和测试数据的分布不相同时,需要进行知识的迁移.本文提出一种基于实例KMM匹配的参数迁移学习方法.利用KMM算法估计每个源领域实例的权重,再利用得到的权重,把这些实例应用到基于参数的迁移学习方法中.把该迁移学习算法应用到无线网络定位问题中时,该方法的定位准确度要高于单独从实例或是从参数出发的迁移学习方法.
推荐文章
基于极限学习机的迁移学习算法
迁移学习
极限学习机
三维模型分类
基于FCM的文本迁移学习算法
模糊C-均值
自然邻
迁移学习
孤立点
基于极限学习机参数迁移的域适应算法
域适应
迁移学习
极限学习机
正则化
中层语义特征
深度特征
BioTrHMM:基于迁移学习的生物医学命名实体识别算法
迁移学习
隐马尔可夫模型
命名实体识别
文本挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于KMM匹配的参数迁移学习算法
来源期刊 湖南大学学报(自然科学版) 学科
关键词 迁移 实例 权重 参数
年,卷(期) 2011,(4) 所属期刊栏目 计算机科学
研究方向 页码范围 72-76
页数 分类号 TP18
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张汗灵 湖南大学信息科学与工程学院 27 253 8.0 15.0
2 周敏 4 23 2.0 4.0
3 汤隆慧 湖南大学信息科学与工程学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (4)
同被引文献  (0)
二级引证文献  (0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
迁移
实例
权重
参数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖南大学学报(自然科学版)
月刊
1674-2974
43-1061/N
16开
1956-01-01
chi
出版文献量(篇)
4768
总下载数(次)
0
总被引数(次)
41941
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导