基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In the paper conventional Adaboost algorithm is improved and local features of face such as eyes and mouth are separated as mutual independent elements for facial feature extraction and classification. The multi-expression classification algorithm which is based on Adaboost and mutual independent feature is proposed. In order to effectively and quickly train threshold values of weak classifiers of features, Sample of training is carried out simple improvement. We obtain a good classification results through experiments.
推荐文章
Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element
Geochemical signature
Concentration–area (C–A) fractal
Principal component analysis (PCA)
Student's t-value
Fuzzy mineral prospectivity modeling(MPM)
Prediction–area (P–A) plot
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
基于Feature的WEB GIS空间信息共享方案的研究
GIS
WEB GIS
FEATURE
空间信息共享
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 The Study of Multi-Expression Classification Algorithm Based on Adaboost and Mutual Independent Feature
来源期刊 信号与信息处理(英文) 学科 工学
关键词 ADABOOST Multi-Expression Classification Algorithm Local FEATURE FEATURE Extraction SAMPLE Training
年,卷(期) xhyxxclyw_2011,(4) 所属期刊栏目
研究方向 页码范围 270-273
页数 4页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ADABOOST
Multi-Expression
Classification
Algorithm
Local
FEATURE
FEATURE
Extraction
SAMPLE
Training
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号与信息处理(英文)
季刊
2159-4465
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
301
总下载数(次)
0
论文1v1指导