作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于凸包的k局部超平面距离分类方法,通过改进k近邻算法在处理小样本问题时的决策边界而显著提高分类性能.但是,该方法对噪声和类的数目敏感,并且在一类样本“包围”另一类样本时,由于外围类凸包与内部样本的距离为零而导致分类错误.针对上述问题,提出了k子凸包分类方法,该方法融合了k近邻分类和凸包技术的优点,首先寻找测试样本的k近邻,然后在该邻域中计算测试样本到相应类的子凸包的距离,并根据距离大小来确定该测试样本的类别,有效克服了k局部超平面距离分类存在的不足.大量实验表明,文章提出的k子凸包分类方法在分类性能上具有显著的优势.
推荐文章
基于凸包的人脸粗分类方法
模式识别
特征提取
人脸粗分类
凸包
层次聚类
基于特征选择的相对k子凸包分类方法
相对k子凸包分类
自适应
判别正则化
特征选择
选择性自适应k子凸包分类方法
选择性
自适应
留一法
k子凸包
凸包分类
基于小波和最近邻凸包分类器的人脸识别
小波变换
凸包
最近邻凸包分类
图像识别
人脸识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 k子凸包分类方法
来源期刊 山西大学学报(自然科学版) 学科 工学
关键词 k局部超平面 k近邻 k子凸包
年,卷(期) 2011,(3) 所属期刊栏目 第三届全国智能信息处理学术会议论文选登
研究方向 页码范围 374-380
页数 分类号 TP391
字数 3329字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 牟廉明 内江师范学院四川省高等学校数值仿真重点实验室 46 187 7.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (6)
参考文献  (3)
节点文献
引证文献  (4)
同被引文献  (14)
二级引证文献  (3)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
k局部超平面
k近邻
k子凸包
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山西大学学报(自然科学版)
季刊
0253-2395
14-1105/N
大16开
太原市坞城路92号
22-42
1960
chi
出版文献量(篇)
2646
总下载数(次)
7
总被引数(次)
12039
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导