基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
不平衡数据集分类中,采用欠抽样方法容易忽略多数类中部分有用信息,为此提出一种基于AdaBoost的欠抽样集成学习算法U-Ensemble。该方法首先使用AdaBoost算法对数据集预处理,得到各样例权重。训练基分类器时,针对多数类数据不再采用bootstrap抽样方法,而是分别随机选择部分权重较大的样例与部分权重较小的样例,使两部分样例个数与少数类样例个数相同,并组成Bagging成员分类器的训练数据。实验结果证明了算法的有效性。
推荐文章
基于AdaBoost的类不平衡学习算法
机器学习
类不平衡学习
集成学习
SMOTE
数据清理技术
基于BSMOTE和逆转欠抽样的不均衡数据分类算法
不均衡数据集
边界少数类样本合成过抽样技术
逆转欠抽样技术
多分类器集成
基于集成学习的Adaboost演化决策树算法
决策树
演化算法
集成学习
基于AdaBoost的极限学习机集成算法
AdaBoost
极限学习机
集成算法
G-mean、F-score
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于AdaBoost的欠抽样集成学习算法
来源期刊 山东大学学报:工学版 学科 工学
关键词 不平衡数据集 AdaBoost算法 欠抽样
年,卷(期) 2011,(4) 所属期刊栏目
研究方向 页码范围 91-94,100
页数 分类号 TP391
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (2)
共引文献  (4)
参考文献  (3)
节点文献
引证文献  (7)
同被引文献  (17)
二级引证文献  (17)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(6)
  • 引证文献(0)
  • 二级引证文献(6)
2020(9)
  • 引证文献(0)
  • 二级引证文献(9)
研究主题发展历程
节点文献
不平衡数据集
AdaBoost算法
欠抽样
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东大学学报(工学版)
双月刊
1672-3961
37-1391/T
大16开
济南市经十路17923号
24-221
1956
chi
出版文献量(篇)
3095
总下载数(次)
14
总被引数(次)
24236
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导