作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
机器学习的发展趋势,就是不断地使用易获得的、廉价的数据作为样本数据,来辅助训练数据进行学习。“无师自通”学习是迁移学习的一种改进,它使用未标记的数据集作为样本数据集,且并不假设未标记数据集和标记数据集有着同样的数据分布,它运用稀疏编码方法来对未标记数据集得到一个更高层次的表示。然后,再使用经典的监督学习方法如SVM方法来对得到的新的数据集进行机器学习。该文将介绍“无师自通”学习法的主要原理,并对其核心算法一稀疏编码算法进行深入分析并通过实验给出具体的实例。
推荐文章
油田监测与分析系统核心算法修正
智能油田
故障诊断
动液面
产量计量
采用核增强学习方法的多机器人编队控制
多机器人
编队控制
增强学习
策略评测
策略迭代
核方法
基于概率轨迹匹配的机器人模仿学习方法
模仿学习
概率模型
轨迹匹配
高斯过程
控制策略
机器人示教缝纫动作的学习方法
缝纫机器人
OPENPOSE模型
示教动作
高斯混合模型
高斯混合回归
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 “无师自通”机器学习方法的核心算法分析
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 机器学习 无师自通 未标记数据集 稀疏编码 监督学习
年,卷(期) 2011,(4) 所属期刊栏目
研究方向 页码范围 2335-2338
页数 4页 分类号 TP18
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周欣 中央财经大学信息学院 7 51 4.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器学习
无师自通
未标记数据集
稀疏编码
监督学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导