原文服务方: 化工学报       
摘要:
针对过程的动态时变特性,提出一种基于PLS核算法的软测量在线学习方法.该方法利用PLS核算法,通过递推学习具有代表性的新样本来改善模型的适应能力,较NIPALS算法具有更高的计算效率;并采用一种同时考虑输入和输出信息的相似度准则,有选择地删除一个或多个冗余样本,更有效地构建了训练样本集.工业聚丙烯熔融指数的软测量建模研究表明,本文提出的方法能够快速有效地跟踪牌号切换中熔融指数的变化.
推荐文章
基于核极限学习机的快速主动学习方法及其软测量应用
主动学习
过程控制
优化
核极限学习机
软测量
化学过程
基于稳定Hammerstein模型的在线软测量建模方法及应用
Hammerstein模型
在线建模
软测量
预测
稳定学习
污水处理过程
稳定性
基于OBE-PLS软测量的过程自适应建模
工况迁移
静态软测量
最优定界椭球
偏最小二乘
动态软测量
基于在线聚类的多模型软测量建模方法
多模型
软测量
在线聚类
v-支持向量回归机
k-交叉验证算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于递推PLS核算法的软测量在线学习方法
来源期刊 化工学报 学科
关键词 软测量 在线学习 PLS核算法 样本相似度
年,卷(期) 2012,(9) 所属期刊栏目 过程系统工程
研究方向 页码范围 2887-2891
页数 分类号 TP301.6
字数 语种 中文
DOI 10.3969/j.issn.0438-1157.2012.09.034
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (21)
参考文献  (12)
节点文献
引证文献  (19)
同被引文献  (24)
二级引证文献  (23)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(2)
  • 二级参考文献(0)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(4)
  • 参考文献(4)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(6)
  • 引证文献(4)
  • 二级引证文献(2)
2015(7)
  • 引证文献(4)
  • 二级引证文献(3)
2016(11)
  • 引证文献(3)
  • 二级引证文献(8)
2017(8)
  • 引证文献(3)
  • 二级引证文献(5)
2018(3)
  • 引证文献(2)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
软测量
在线学习
PLS核算法
样本相似度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
化工学报
月刊
0438-1157
11-1946/TQ
大16开
1923-01-01
chi
出版文献量(篇)
11879
总下载数(次)
0
总被引数(次)
117834
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
山东省自然科学基金
英文译名:Natural Science Foundation of Shandong Province
官方网址:http://kyc.wfu.edu.cn/second/wnfw/shandongshengzirankexuejijin.htm
项目类型:重点项目
学科类型:
论文1v1指导