基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了设计高效的软件缺陷预测模型,提出一种将粒子群优化算法与朴素贝叶斯(NB)相结合的方法.该方法对历史数据进行离散化后,以NB分类的错误率作为粒子适应值函数,构建软件缺陷预测模型.通过对美国国家航天局软件工程项目的JM1数据进行仿真实验,证明该模型在预测性能方面优于同类方法,预测效果良好.
推荐文章
基于引力模型的朴素贝叶斯分类算法
分类算法
朴素贝叶斯
引力模型
遥感图像
软件缺陷集成预测模型研究
软件缺陷预测
集成分类
投票
随机森林
基于贝叶斯Logistic回归的软件缺陷预测研究
缺陷预测
贝叶斯Logistic回归
信息先验
基于BP和朴素贝叶斯的时间序列分类模型
时序序列
BP神经网络
朴素贝叶斯
特征抽取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO和朴素贝叶斯的软件缺陷预测模型
来源期刊 计算机工程 学科 工学
关键词 软件缺陷 预测模型 粒子群优化 朴素贝叶斯 数据离散化
年,卷(期) 2011,(12) 所属期刊栏目 软件技术与数据库
研究方向 页码范围 36-37
页数 分类号 TP311.5
字数 2465字 语种 中文
DOI 10.3969/j.issn.1000-3428.2011.12.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 金聪 华中师范大学计算机科学系 69 430 13.0 16.0
2 叶俊民 华中师范大学计算机科学系 85 454 11.0 16.0
3 葛贺贺 华中师范大学计算机科学系 2 25 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (22)
参考文献  (3)
节点文献
引证文献  (11)
同被引文献  (14)
二级引证文献  (14)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(3)
  • 引证文献(2)
  • 二级引证文献(1)
2015(4)
  • 引证文献(2)
  • 二级引证文献(2)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(6)
  • 引证文献(1)
  • 二级引证文献(5)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
软件缺陷
预测模型
粒子群优化
朴素贝叶斯
数据离散化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
相关基金
湖北省自然科学基金
英文译名:Natural Science Foundation of Hubei Province
官方网址:http://www.shiyanhospital.com/my/art/viewarticle.asp?id=79
项目类型:重点项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导