基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提出一种更适用于分析fMRI图像特征的机器学习算法,引入机器学习近年提出的、具有较好的泛化能力、并能够保证极值解是全局最优解的新方法支持向量机(SVM)算法,具体选择了PSVM、SSVM、LPSVM、NSVM 4种SVM改进算法以及基本SVM算法应用于fMRI图像的分类问题,在MATLAB平台上进行了算法仿真实现。在对各种算法的分类计算时间、分类精确度两个方面进行比较和讨论后,得到PSVM算法在fMRI图像的分类问题上,有较好的综合性能。
推荐文章
基于改进SVM算法的植物叶片分类研究
植物叶片分类
布谷鸟搜索算法
支持向量机
基于改进的SVM分类器的医学图像分类新方法
改进的支持向量机方法
粗糙集
乳腺X光图像
基于多核学习SVM的图像分类识别算法
支持向量机
多核学习
行人检测
图像识别
直方图交叉核
交叉验证
基于SVM的图像分类
支持向量机
分类器
底层特征
高层语义
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于SVM及其改进算法的fMRI图像分类性能研究
来源期刊 电子设计工程 学科 工学
关键词 机器学习 SVM 分类 fMRI图像
年,卷(期) 2011,(16) 所属期刊栏目 计算机技术与应用
研究方向 页码范围 24-27
页数 分类号 TN911.72
字数 3083字 语种 中文
DOI 10.3969/j.issn.1674-6236.2011.16.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵海涛 第四军医大学第一附属医院放射科 129 1069 17.0 25.0
2 谢松云 西北工业大学电子信息学院 49 582 11.0 22.0
3 赵金 西北工业大学电子信息学院 3 8 2.0 2.0
4 吕卓 西北工业大学电子信息学院 2 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (11)
参考文献  (5)
节点文献
引证文献  (4)
同被引文献  (5)
二级引证文献  (17)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(4)
  • 引证文献(2)
  • 二级引证文献(2)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(3)
  • 引证文献(1)
  • 二级引证文献(2)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
机器学习
SVM
分类
fMRI图像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子设计工程
半月刊
1674-6236
61-1477/TN
大16开
西安市高新区高新路25号瑞欣大厦10A室
52-142
1994
chi
出版文献量(篇)
14564
总下载数(次)
54
总被引数(次)
54366
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导