基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统模糊神经网络设计复杂、控制实时性滞后的问题,提出自组织双模糊神经网络算法.将样本数据进行聚类划分,形成原始的模糊隶属函数集;在神经网络的离线训练过程中,完善并优化模糊隶属函数和规则;采用双神经网络结构,在线工作时,一个神经网络完成在线学习任务,另一个神经网络完成工业控制任务;经过一定的系统周期,同步系统中两组神经网络的参数;提取完成控制任务的神经网络的输出作为算法的输出.应用于火箭发动机试验台控制系统中,表明算法能够提升控制系统中针对输入参数越界的鲁棒性,提高控制实时性,简化了模糊神经网络的设计复杂度.
推荐文章
一种改进的结构自适应自组织神经网络算法
聚类
分类
神经元网络
结构自适应神经网络
基于EKF的模糊神经网络快速自组织学习算法
模糊神经网络
扩展卡尔曼滤波
自组织学习
SCARA机器人自组织模糊聚类神经网络控制器
自组织模糊控制
聚类分析
模糊系统
神经网络
一种新的基于自组织神经网络的运动估计算法
运动估计
自组织神经网络
自组织特征映射算法
矢量量化
视频编码
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种自组织双模糊神经网络控制算法
来源期刊 计算机工程与应用 学科 工学
关键词 双神经网络 自组织模糊神经网络 火箭发动机试验台控制系统
年,卷(期) 2011,(17) 所属期刊栏目 工程与应用
研究方向 页码范围 221-223,228
页数 分类号 TP183
字数 4325字 语种 中文
DOI 10.3778/j.issn.1002-8331.2011.17.062
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吕林涛 西安理工大学计算机科学与工程学院 54 758 13.0 26.0
2 安婧 西安理工大学计算机科学与工程学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (4)
参考文献  (2)
节点文献
引证文献  (6)
同被引文献  (6)
二级引证文献  (14)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(4)
  • 引证文献(2)
  • 二级引证文献(2)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(3)
  • 引证文献(1)
  • 二级引证文献(2)
2015(6)
  • 引证文献(2)
  • 二级引证文献(4)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
双神经网络
自组织模糊神经网络
火箭发动机试验台控制系统
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导