基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为利用生态环境中各种声音包含的信息,提出一种将流形学习算法和支持向量机(SVM)相结合的生态环境声音分类技术.提取音频强度、音色、音调和音频节奏的特征集合并计算对应的特征向量,采用改进的拉普拉斯特征映射流形学习算法对特征向量进行维数约简,从而降低数据处理的复杂性.使用SVM对降维后的特征向量进行分类,发挥SVM在处理小样本、非线性及高维数据方面的优势,从而提高分类准确率.实验结果表明,该技术能对生态环境声音进行快速准确的分类.
推荐文章
基于流形学习和SVM的Web文档分类算法
文档分类
流形学习
支持向量机
基于流形学习的社会化媒体网络数据分类
流形学习
拉普拉斯特征映射
社会化媒体
网络数据分类
多标签
基于核融合的多信息流形学习算法
核融合
流形学习
多信息
流形学习中的算法研究
流形学习
主流形
局部线性嵌套
等度规映射
变分法
互信息
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于流形学习和SVM的环境声音分类
来源期刊 计算机工程 学科 工学
关键词 生态环境声音分类 流形学习 支持向量机
年,卷(期) 2011,(7) 所属期刊栏目 开发研究与设计技术
研究方向 页码范围 288-290
页数 分类号 TP311
字数 4521字 语种 中文
DOI 10.3969/j.issn.1000-3428.2011.07.097
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 余清清 福州大学数学与计算机科学学院 5 23 3.0 4.0
2 李应 福州大学数学与计算机科学学院 39 185 7.0 10.0
3 李勇 福州大学数学与计算机科学学院 8 38 5.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (19)
参考文献  (5)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(3)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
生态环境声音分类
流形学习
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导