基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Decision making is one of the central problems in artificial intelligence and specifically in robotics. In most cases this problem comes with uncertainty both in data received by the decision maker/agent and in the actions performed in the environment. One effective method to solve this problem is to model the environment and the agent as a Partially Observable Markov Decision Process (POMDP). A POMDP has a wide range of applications such as: Machine Vision, Marketing, Network troubleshooting, Medical diagnosis etc. In recent years, there has been a significant interest in developing techniques for finding policies for (POMDPs).We consider two new techniques, called Recursive Point Filter (RPF) and Scan Line Filter (SCF) based on Incremental Pruning (IP) POMDP solver to introduce an alternative method to Linear Programming (LP) filter for IP. Both, RPF and SCF have solutions for several POMDP problems that LP could not converge to in 24 hours. Experiments are run on problems from POMDP literature, and an Average Discounted Reward (ADR) is computed by testing the policy in a simulated environment.
推荐文章
基于观测的POMDP优化算法及其仿真
部分可观测马尔可夫决策过程(POMDP)
灵敏度分析
优化
仿真
一种基于独立任务的 POMDP 问题的解决方法
POMDP
基于点的算法
相互独立的任务
多元 POMDP
受限制的 POMDPs
探索 After Effects 在动画专业制作中的应用
After Effects(AE)
动画制作
功能应用
动画效果
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Evaluating Effects of Two Alternative Filters for the Incremental Pruning Algorithm on Quality of Pomdp Exact Solutions
来源期刊 智能科学国际期刊(英文) 学科 医学
关键词 Planning Under Uncertainty POMDP INCREMENTAL PRUNING FILTERS
年,卷(期) 2012,(1) 所属期刊栏目
研究方向 页码范围 1-8
页数 8页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Planning
Under
Uncertainty
POMDP
INCREMENTAL
PRUNING
FILTERS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能科学国际期刊(英文)
季刊
2163-0283
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
102
总下载数(次)
0
总被引数(次)
0
论文1v1指导