基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
With the rapid growth of the Internet in recent years, the ability to analyze and identify its users has become increasingly important. Authorship analysis provides a means to glean information about the author of a document originating from the internet or elsewhere, including but not limited to the author’s gender. There are well-known linguistic differences between the writing of men and women, and these differences can be effectively used to predict the gender of a document’s author. Capitalizing on these linguistic nuances, this study uses a set of stylometric features and a set of word count features to facilitate automatic gender discrimination on emails from the popular Enron email dataset. These features are used in conjunction with the Modified Balanced Winnow Neural Network proposed by Carvalho and Cohen, an improvement on the original Balanced Winnow created by Littlestone. Experiments with the Modified Balanced Winnow show that it is effectively able to discriminate gender using both stylometric and word count features, with the word count features providing superior results.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Assessment of trace metals contamination in stream sediments and soils in Abuja leather mining, sout
Trace metals
Stream sediments
Geoaccumulation index
PCA
Soil
Southwestern Nigeria
基于 iBooks Author的电子教材研究
电子教材
特性
注意问题
普及因素
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Author Gender Prediction in an Email Stream Using Neural Networks
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 1-Gram Word Counts Balanced WINNOW ENRON EMAIL GENDER PREDICTION Neural Network STREAM Mining Stylometric Features
年,卷(期) 2012,(3) 所属期刊栏目
研究方向 页码范围 169-175
页数 7页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
1-Gram
Word
Counts
Balanced
WINNOW
ENRON
EMAIL
GENDER
PREDICTION
Neural
Network
STREAM
Mining
Stylometric
Features
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导