基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
鉴于其优越的预报性能,将相关向量机(RVM)应用到中长期径流预报中,并在相空间重构的基础上,建立了基于相关向量机的径流预报模型.该模型首先对径流时间序列进行相空间重构,并以重构后的径流序列作为模型输入;其次,采用粒子群优化(PSO)算法识别模型参数,利用优化所得重构参数验证时间序列具有混沌特性,在模型内循环过程中采用EM算法迭代估计超参数,并将RVM与应用较为广泛的最小二乘支持向量机(LSSVM)和自动回归滑动平均模型(ARMA)进行了比较分析,结果表明该模型具有较好的泛化能力;最后,基于水文过程变化的不确定性、RVM描述输出值的不确定度以及相应概率下的预报区间,使得调度人员在决策中能考虑预报的不确定性,定量估计各种决策的风险和效益.
推荐文章
基于统计模型的西江枯季中长期径流预报研究
均生函数
周期分析
多元逐步回归
中长期径流预报
西江
中长期径流预报中PCA-IBP模型的改进算法研究
径流预报
主成分分析
BP神经网络
模型
算法
季节性支持向量机中长期径流预报模型
中长期径流预报
季节性
支持向量机
基于支持向量机的中长期入库径流预报
支持向量机(SVM)
径流预报
预报因子
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于相关向量机的中长期径流预报模型研究
来源期刊 大连理工大学学报 学科 工学
关键词 相空间重构 相关向量机 长期径流预报 PSO算法
年,卷(期) 2012,(1) 所属期刊栏目 船舶、土木工程
研究方向 页码范围 79-84
页数 6页 分类号 TV124
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周惠成 172 2832 29.0 46.0
2 彭勇 83 639 15.0 20.0
3 仕玉治 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (56)
共引文献  (105)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(3)
  • 参考文献(0)
  • 二级参考文献(3)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(4)
  • 参考文献(0)
  • 二级参考文献(4)
1993(4)
  • 参考文献(0)
  • 二级参考文献(4)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(6)
  • 参考文献(1)
  • 二级参考文献(5)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(8)
  • 参考文献(1)
  • 二级参考文献(7)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(4)
  • 参考文献(2)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
相空间重构
相关向量机
长期径流预报
PSO算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
大连理工大学学报
双月刊
1000-8608
21-1117/N
大16开
大连市理工大学出版社内
8-82
1950
chi
出版文献量(篇)
3166
总下载数(次)
3
总被引数(次)
39997
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导