作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Purpose:The purpose of the study is to explore the potential use of nature language process(NLP)and machine learning(ML)techniques and intents to find a feasible strategy and effective approach to fulfill the NER task for Web oriented person-specific information extraction.Design/methodology/approach:An SVM-based multi-classification approach combined with a set of rich NLP features derived from state-of-the-art NLP techniques has been proposed to fulfill the NER task.A group of experiments has been designed to investigate the influence of various NLP-based features to the performance of the system,especially the semantic features.Optimal parameter settings regarding with SVM models,including kernel functions,margin parameter of SVM model and the context window size,have been explored through experiments as well.Findings:The SVM-based multi-classification approach has been proved to be effective for the NER task.This work shows that NLP-based features are of great importance in datadriven NE recognition,particularly the semantic features.The study indicates that higher order kernel function may not be desirable for the specific classification problem in practical application.The simple linear-kernel SVM model performed better in this case.Moreover,the modified SVM models with uneven margin parameter are more common and flexible,which have been proved to solve the imbalanced data problem better.Research limitations/implications:The SVM-based approach for NER problem is only proved to be effective on limited experiment data.Further research need to be conducted on the large batch of real Web data.In addition,the performance of the NER system need be tested when incorporated into a complete IE framework.Originality/value:The specially designed experiments make it feasible to fully explore the characters of the data and obtain the optimal parameter settings for the NER task,leading to a preferable rate in recall,precision and F1measures.The overall system performance(F1value)for all types of name entities can achieve
推荐文章
Entity Framework浅析
EDM
ADO.NET
Entity Framework
编程员
Distribution and assessment of hydrogeochemical processes of F-rich groundwater using PCA model: a c
Fluoride
Groundwater chemistry
PCA model
Hydrogeochemical processes
Yuncheng Basin
Entity Framework数据库访问
数据库
模型
代码
Entity Framework技术
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Person-specific named entity recognition using SVM with rich feature sets
来源期刊 中国文献情报:英文版 学科 工学
关键词 Named ENTITY RECOGNITION Natural language processi
年,卷(期) 2012,(3) 所属期刊栏目
研究方向 页码范围 27-46
页数 20页 分类号 TP391.1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (26)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Named
ENTITY
RECOGNITION
Natural
language
processi
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据与情报科学学报:英文版
季刊
2096-157X
10-1394/G2
北京市中关村北四环西路33号
82-563
出版文献量(篇)
445
总下载数(次)
1
总被引数(次)
0
论文1v1指导