基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Recurrent Neural Networks were invented a long time ago, and dozens of different architectures have been published. In this paper we generalize recurrent architectures to a state space model, and we also generalize the numbers the network can process to the complex domain. We show how to train the recurrent network in the complex valued case, and we present the theorems and procedures to make the training stable. We also show that the complex valued recurrent neural network is a generalization of the real valued counterpart and that it has specific advantages over the latter. We conclude the paper with a discussion of possible applications and scenarios for using these networks.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Complex Valued Recurrent Neural Network: From Architecture to Training
来源期刊 信号与信息处理(英文) 学科 数学
关键词 COMPLEX VALUED NEURAL NETWORKS COMPLEX VALUED System Identification RECURRENT NEURAL NETWORKS COMPLEX VALUED RECURRENT NEURAL NETWORKS
年,卷(期) 2012,(2) 所属期刊栏目
研究方向 页码范围 192-197
页数 6页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
COMPLEX
VALUED
NEURAL
NETWORKS
COMPLEX
VALUED
System
Identification
RECURRENT
NEURAL
NETWORKS
COMPLEX
VALUED
RECURRENT
NEURAL
NETWORKS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号与信息处理(英文)
季刊
2159-4465
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
301
总下载数(次)
0
总被引数(次)
0
论文1v1指导