针对Tri-training算法利用无标记样例时会引入噪声且限制无标记样例的利用率而导致分类性能下降的缺点,提出了AR-Tri-training(Tri-training with assistant and rich strategy)算法.提出辅助学习策略,结合富信息策略设计辅助学习器,并将辅助学习器应用在Tri-training训练以及说话声识别中.实验结果表明,辅助学习器在Tri-training训练的基础上不仅降低每次迭代可能产生的误标记样例数,而且能够充分地利用无标记样例以及在验证集上的错分样例信息.从实验结果可以得出,该算法能够弥补Tri-training算法的缺点,进一步提高测试率.