基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In the present paper, the problem of handwritten character recognition has been tackled with multiresolution technique using discrete wavelet transform (DWT) and Euclidean distance metric (EDM). The technique has been tested and found to be more accurate and faster. Characters is classified into 26 pattern classes based on appropriate properties. Features of the handwritten character images are extracted by DWT used with appropriate level of multiresolution technique, and then each pattern class is characterized by a mean vector. Distances from input pattern vector to all the mean vectors are computed by EDM. Minimum distance determines the class membership of input pattern vector. The proposed method provides good recognition accuracy of 90% for handwritten characters even with fewer samples.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Handwritten Character Recognition Using Multiresolution Technique and Euclidean Distance Metric
来源期刊 信号与信息处理(英文) 学科 工学
关键词 DISCRETE WAVELET TRANSFORM Euclidean DISTANCE Metric Feature Extraction Handwritten CHARACTER Recognition Bounding Box Mean Vector
年,卷(期) 2012,(2) 所属期刊栏目
研究方向 页码范围 208-214
页数 7页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DISCRETE
WAVELET
TRANSFORM
Euclidean
DISTANCE
Metric
Feature
Extraction
Handwritten
CHARACTER
Recognition
Bounding
Box
Mean
Vector
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号与信息处理(英文)
季刊
2159-4465
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
301
总下载数(次)
0
总被引数(次)
0
论文1v1指导