原文服务方: 航空工程进展       
摘要:
为提高多段翼型增升效能,开展包括襟/缝翼偏度和缝道参数在内的优化设计研究。将神经网络与遗传算法结合的优化设计方法应用于气动优化设计,并针对30P30N三段翼型,分别以8°迎角时升阻比最大和22°迎角时升力最大为目标进行了单目标和多目标优化设计研究。研究结果表明:采用单目标设计虽可在设计点获得较好的优化结果,但在非设计状态气动性能下降;采用多目标优化设计,既可获得良好的中等迎角升阻性能,又可改善大迎角失速性能,使综合气动性能更优;遗传算法与神经网络结合的优化设计方法可满足多段翼型的多点优化设计问题,具有高效、高精度等优点,易于工程应用。
推荐文章
基于遗传算法多段翼型外形优化设计
多段翼型
优化设计
遗传算法
RANS方程
椭圆方程
基于神经网络和遗传算法的多齿轮并联传动优化设计
神经网络
遗传算法
多齿轮并联传动系统
优化设计
基于遗传算法优化的BP神经网络研究应用
人工神经网络
BP神经网络
遗传算法
GA?BP神经网络
优化方法
搜索能力
基于神经网络与遗传算法的传动部件设计优化
神经网络
遗传算法
Matlab
设计优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 遗传算法结合神经网络的多段翼型优化设计研究
来源期刊 航空工程进展 学科
关键词 遗传算法 神经网络 多段翼型 优化设计
年,卷(期) 2012,(4) 所属期刊栏目 总体与气动
研究方向 页码范围 413-421
页数 9页 分类号 V211.3
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张彬乾 西北工业大学航空学院 70 393 11.0 16.0
2 褚胡冰 西北工业大学航空学院 5 49 4.0 5.0
3 刘光兵 西北工业大学航空学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (50)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遗传算法
神经网络
多段翼型
优化设计
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
航空工程进展
双月刊
1674-8190
61-1479/V
大16开
2010-01-01
chi
出版文献量(篇)
1230
总下载数(次)
0
总被引数(次)
3010
论文1v1指导