基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对支持向量机分类方法在小样本、非线性情况下具有较好的泛化性能的特点,结合入侵检测系统实时性和适应性的要求,提出了一种应用动态支持向量机的入侵检测系统,来提高SVM模型的分类精度,并详细介绍了系统训练集以及分类模型动态更新的方法.最后对系统进行了仿真验证.实验仿真表明,该系统可有效的提高入侵检测的准确率,改善由于数据集更新造成的SVM分类精度下降的情况.
推荐文章
基于SSA-SVM的网络入侵检测研究
麻雀搜索算法
误报率
支持向量机
网络入侵
检测率
基于SVM技术的入侵检测
信息安全
入侵检测
异常检测
滥用检测
1类SVM(支持向量机)
粒子群算法和SVM的网络入侵检测
粒子群算法
支持向量机
网络入侵
检测算法
基于模糊聚类的Linux网络动态入侵检测
模糊聚类
相关数据集合
入侵检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于动态SVM的网络入侵检测研究
来源期刊 计算机与数字工程 学科 工学
关键词 支持向量机 入侵检测 数据集更新
年,卷(期) 2012,(11) 所属期刊栏目 信息处理与网络安全
研究方向 页码范围 118-120
页数 3页 分类号 TP393
字数 3063字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (63)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (6)
二级引证文献  (1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量机
入侵检测
数据集更新
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导