基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
重轨标识自动识别对于企业的质量控制至关重要,针对目前主要依靠人工检测法来观察重轨字符的现状,提出利用机器视觉获得图像进行标识识别的思想:在对图像的字符区域进行定位之后,利用基于粒子群算法的支持向量机参数选择方法对重轨标识进行分类。实验结果表明,经粒子群优化算法优化的支持向量机回归模型具有较高的分类精度与检测效率,其训练集的字符识别准确率达到了99%,测试集的准确率达到了83%,训练时间为62.195s,各项指标高于遗传算法优化的支持向量机回归模型。能够用于重轨标识的在线检测。
推荐文章
基于PSO-SVM的发动机故障诊断研究
粒子群优化算法
支持向量机
发动机
故障诊断
基于PSO-SVM的管道小泄漏检测
管道
泄漏检测
超声波波速
特征提取
SVM
PSO-SVM
基于PSO-SVM算法的长微博贴图识别方法
长微博贴图
支持向量机
粒子群优化算法
最佳分类模型
基于维谱和SVM的水下目标识别方法
维谱
支持向量机(SVM)
特征提取
目标识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO-SVM的重轨标识识别方法研究
来源期刊 现代科学仪器 学科 工学
关键词 标识识别 区域定位 支持向量机 粒子群算法
年,卷(期) 2012,(6) 所属期刊栏目 仪器研制与开发
研究方向 页码范围 87-90
页数 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谢志江 重庆大学机械传动国家重点实验室 159 1375 19.0 29.0
2 楚红雨 西南科技大学信息工程学院 28 110 6.0 8.0
3 刘琴 重庆大学机械传动国家重点实验室 10 48 4.0 6.0
4 米曾真 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (47)
参考文献  (8)
节点文献
引证文献  (1)
同被引文献  (2)
二级引证文献  (0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(3)
  • 参考文献(1)
  • 二级参考文献(2)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
标识识别
区域定位
支持向量机
粒子群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代科学仪器
双月刊
1003-8892
11-2837/TH
大16开
北京海淀区西三环北路27号理化实验楼512室
1984
chi
出版文献量(篇)
4906
总下载数(次)
12
总被引数(次)
20682
论文1v1指导