We consider a multivariate Langevin equation in discrete time, driven by a force induced by certain Gibbs’states. The main goal of the paper is to study the asymptotic behavior of a random walk with stationary increments (which are interpreted as discrete-time speed terms) satisfying the Langevin equation. We observe that (stable) functional limit theorems and laws of iterated logarithm for regular random walks with i.i.d. heavy-tailed increments can be carried over to the motion of the Langevin particle.