基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对海战场图像信息的目标检测与识别,提出了一种适于海战场区域特征的遥感图像目标检测与识别方法.研究采用线性滤波器将图像划分为若干个空间尺度,并对不同空间尺度的图像,根据生物视觉生理特性的原理,提取图像中目标的视觉显著性特征,此特征包含目标不同于其周围区域的程度和空间分布状态.根据分析提取的目标空间特征信息,使用支持向量机对视觉显著性特征图像进行分类,实现目标信息提取,并通过Dempster-Shafer证据理论的分析方法判断目标的相关信息及其置信度,达到识别目标的目的.实验结果表明:此方法能以高可靠性和高精确度检测出海战场图像信息中的目标,获取目标相关信息.
推荐文章
基于聚类的海战场目标分群方法
海战场
分群
Chameleon算法
海战场时空关系研究
海战场
时空数据
拓扑关系
空间关系
基于深度学习的海战场图像目标识别
卷积神经网络
深度学习
图像识别
战场目标被动噪声识别技术
声信号
模式识别
声探测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 海战场的目标检测与识别
来源期刊 华中科技大学学报:自然科学版 学科 工学
关键词 目标识别 显著性 支持向量机 Dempster-Shafer证据 海战场 遥感图像
年,卷(期) 2012,(10) 所属期刊栏目 电子与信息工程
研究方向 页码范围 9-12
页数 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王小非 25 145 7.0 10.0
2 夏学知 64 372 10.0 16.0
3 李琳 9 54 5.0 7.0
4 安彧 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (6)
同被引文献  (0)
二级引证文献  (7)
1967(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(5)
  • 引证文献(2)
  • 二级引证文献(3)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
目标识别
显著性
支持向量机
Dempster-Shafer证据
海战场
遥感图像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华中科技大学学报(自然科学版)
月刊
1671-4512
42-1658/N
大16开
武汉市珞喻路1037号
38-9
1973
chi
出版文献量(篇)
9146
总下载数(次)
26
总被引数(次)
88536
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导