作者:
原文服务方: 微电子学与计算机       
摘要:
为提高网络安全性,提出一种改进支持向量机的网络入侵检测算法.首先采用核主成分分析提取网络数据重要特征,加快网络入侵检测速度,然后采用粒子群算法对支持向量机参数进行优化,提高网络检测正确率.仿真实验结果表明,改进支持向量提高网络入侵检测正确率,降低漏检率,同时加快了网络入侵检测速度,是一种有效、实时性较强的网络入侵检测算法.
推荐文章
支持向量机在网络异常入侵检测中的应用
网络入侵检测
异常检测
支持向量机
统计学习理论
改进支持向量聚类在网络入侵检测中的应用研究
入侵检测
无监督聚类
支持向量聚类
相似度异构距离度量
改进蚁群算法优化支持向量机的网络入侵检测
网络入侵
蚁群优化算法
支持向量机
参数优化
支持向量机在入侵检测系统中的应用
入侵检测
支持向量机
机器学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进支持向量机在网络入侵检测中的应用
来源期刊 微电子学与计算机 学科
关键词 粒子群优化算法 核主成分分析 支持向量机 入侵检测
年,卷(期) 2012,(3) 所属期刊栏目
研究方向 页码范围 10-13
页数 分类号 TP309
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王辉 南京工业大学电子与信息工程学院 68 345 10.0 12.0
2 于静 南京工业大学电子与信息工程学院 2 20 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (197)
参考文献  (7)
节点文献
引证文献  (9)
同被引文献  (11)
二级引证文献  (4)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(6)
  • 参考文献(2)
  • 二级参考文献(4)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(5)
  • 引证文献(3)
  • 二级引证文献(2)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(4)
  • 引证文献(3)
  • 二级引证文献(1)
研究主题发展历程
节点文献
粒子群优化算法
核主成分分析
支持向量机
入侵检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导