基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目标识别中多类分类的难点问题,提出了一种C-DSECOC多目标识别方法.该方法采用二符号纠错输出编码(binary Error-Correcting Output Codes)作为分解框架,采用DS证据理论作为解码策略,并结合ECOC结构特点对传统的DS证据理论进行重新构造.在确定DS基本概率赋函数值时引入损失函数,使BPA的获取除与二分器的输出有关外,还由其对不同类别样本的正确分类能力决定,从而提高ECOC集成的分类性能和泛化性能.实验中分别时UCI数据集和3种一维距离像数据集进行测试.结果表明,提出的C-DSECOC方法能有效地提高多类目标识别的正确率.
推荐文章
一种基于DS证据理论的多雷达目标识别方法
目标识别
位置和运动信息
DS证据理论
信息融合
基于模糊集与改进证据理论的目标识别
目标识别
模糊识别
证据集结
改进D-S证据理论
D-S证据理论在目标识别中的应用
证据理论
基本概率赋值
组合规则
决策规则
多传感器目标识别的神经网络与证据理论结合方法
目标识别
FMM
神经网络
D-S证据理论
多传感器数据融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合ECOC与DS证据理论的多目标识别研究
来源期刊 计算机科学 学科 工学
关键词 纠错输出编码 DS证据理论 分类器可信度 损失函数
年,卷(期) 2012,(12) 所属期刊栏目 人工智能
研究方向 页码范围 245-248
页数 4页 分类号 TP391
字数 4991字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王晓丹 空军工程大学导弹学院 135 1447 21.0 31.0
2 雷蕾 空军工程大学导弹学院 36 280 11.0 15.0
3 周进登 空军工程大学导弹学院 7 35 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (55)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(6)
  • 参考文献(1)
  • 二级参考文献(5)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(4)
  • 参考文献(3)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
纠错输出编码
DS证据理论
分类器可信度
损失函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学
月刊
1002-137X
50-1075/TP
大16开
重庆市渝北区洪湖西路18号
78-68
1974
chi
出版文献量(篇)
18527
总下载数(次)
68
总被引数(次)
150664
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导