基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有支持向量机(support vector machines,简称SVM)在构造多类分类器的过程中存在计算费时、搜索率不高的问题,提出了一种新的SVM决策树设计算法.引入具有优良的全局搜索性能的粒子群算法,将其应用于优化决策树,构造出一种自适应性强、识别率高的多元分类器,实现SVM的有效多值分类.将其结果应用于齿轮箱故障诊断中,试验结果证明改进后的SVM构造方法的有效性和准确性.
推荐文章
基于决策树与多元支持向量机的齿轮箱早期故障诊断方法
齿轮箱
决策树
支持向量机
故障识别
神经网络
基于多重分形和PSO-SVM的齿轮箱故障诊断
齿轮箱
分形理论
多重分形
PSO-SVM
故障诊断
基于MED-SVM的齿轮箱故障诊断方法
最小熵反褶积
支持向量机
特征提取
交叉验证
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化决策树的齿轮箱故障诊断
来源期刊 振动、测试与诊断 学科 工学
关键词 粒子群 决策树 支持向量机 故障诊断
年,卷(期) 2013,(1) 所属期刊栏目 论文
研究方向 页码范围 153-156
页数 4页 分类号 TH165.3
字数 3200字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 程珩 太原理工大学机械电子工程研究所 93 978 17.0 27.0
2 黄超勇 太原理工大学机械电子工程研究所 3 20 3.0 3.0
3 张永刚 太原理工大学机械电子工程研究所 2 17 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (11)
参考文献  (4)
节点文献
引证文献  (11)
同被引文献  (27)
二级引证文献  (25)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(4)
  • 引证文献(2)
  • 二级引证文献(2)
2016(5)
  • 引证文献(4)
  • 二级引证文献(1)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(10)
  • 引证文献(0)
  • 二级引证文献(10)
2019(7)
  • 引证文献(1)
  • 二级引证文献(6)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
粒子群
决策树
支持向量机
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
振动、测试与诊断
双月刊
1004-6801
32-1361/V
南京市御道街29号
chi
出版文献量(篇)
2937
总下载数(次)
3
总被引数(次)
26426
论文1v1指导