基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
An efficient face recognition system with face image representation using averaged wavelet packet coefficients, compact and meaningful feature vectors dimensional reduction and recognition using radial basis function (RBF) neural network is presented. The face images are decomposed by 2-level two-dimensional (2-D) wavelet packet transformation. The wavelet packet coefficients obtained from the wavelet packet transformation are averaged using two different proposed methods. In the first method, wavelet packet coefficients of individual samples of a class are averaged then decomposed. The wavelet packet coefficients of all the samples of a class are averaged in the second method. The averaged wavelet packet coefficients are recognized by a RBF network. The proposed work tested on three face databases such as Olivetti-Oracle Research Lab (ORL), Japanese Female Facial Expression (JAFFE) and Essexface database. The proposed methods result in dimensionality reduction, low computational complexity and provide better recognition rates. The computational complexity is low as the dimensionality of the input pattern is reduced.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
面向网状信息的Radial+Focus可视化
网状信息
Radial+Focus可视化
先验重要度
交互历史
布局算法
FACE水稻生育期模拟
水稻
FACE
生育期
模拟模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Face Recognition Based on Wavelet Packet Coefficients and Radial Basis Function Neural Networks
来源期刊 智能学习系统与应用(英文) 学科 工学
关键词 FEATURE Extraction Face Recognition WAVELET PACKETS RADIAL BASIS Function Neural Network
年,卷(期) 2013,(2) 所属期刊栏目
研究方向 页码范围 115-122
页数 8页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FEATURE
Extraction
Face
Recognition
WAVELET
PACKETS
RADIAL
BASIS
Function
Neural
Network
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导