基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Purpose: In this paper, we attempt to use query refinements to identify users’ search intents and seek a method for intent clustering based on real world query data. Design/methodology/approach: An experiment has been conducted to analyze selected search sessions from the American Online(AOL) query logs with a two-stage approach. The first stage is to identify underlying intent by combining query co-occurrence information with query expression similarity. The work in the second stage is to cluster identified results by constructing query vectors through performing random walks on a Markov graph. Findings: Average correctness for identifying search intent is 0.74. Precision, recall, F-score values for intent clustering are 0.73, 0.72 and 0.71,respectively. The results indicate that combining session co-occurrence information and query expression similarity can further filter noises and our clustering method is more suitable for sparse data. Research limitations: We use the time-out threshold(15-minutc) method to group queries in one session, but a user may have multiple search goals at the same time and the multi-task behavior of a user is hard to capture in a session defined based on time notions. Practical implications: This study provides insights into the ways of understanding users’ search intents by analyzing their queries and refinements from a new perspective. The results will help search engine developers to identify user intents. Originality/value: We propose a new method to identify users’ search intents by combining session co-occurrence information and query expression similarity, and a new method for clustering sparse data.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Identifying user intent through query refinements
来源期刊 中国文献情报:英文版 学科 社会科学
关键词 QUERY INTENT QUERY REFINEMENT RANDOM WALK INTENT c
年,卷(期) 2013,(3) 所属期刊栏目
研究方向 页码范围 1-14
页数 14页 分类号 G354
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
QUERY
INTENT
QUERY
REFINEMENT
RANDOM
WALK
INTENT
c
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据与情报科学学报:英文版
季刊
2096-157X
10-1394/G2
北京市中关村北四环西路33号
82-563
出版文献量(篇)
445
总下载数(次)
1
总被引数(次)
0
论文1v1指导