The rapid progress of wireless communication and the availability of many small-sized, light-weighted and low-cost communication and computing devices nowadays have greatly impacted the development of wireless sensor network. Localization using sensor network has attracted much attention for its comparable low-cost and potential use with mon- itoring and targeting purposes in real and hostile application scenarios. Currently, there are many available approaches to locating persons/things based on global positioning system (GPS) and radio-frequency identification (RFID) technologies. However, in some application scenario, e.g., disaster rescue application, such localization devices may be damaged and may not provide the location information of the survivors. The main goal of this paper is to design and develop a robust localization technique for human existence detection in case of disasters such as earthquake or fire. In this paper, we propose a 3-D localization technique based on the hop-count data collected from sensor anchors to estimate the location of the activated sensor mote in 3-D coordination. Our algorithm incorporates two salient features, cubic-based output and event-triggering mechanism, to guarantee both improved accuracy and power efficiency. Both simulation and experimental results indicate that the proposed algorithm can improve the localization precision of the human existence and work well in real environment.