作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对包含噪声与干扰数据的大规模机器学习问题,采用非凸Ramp损失函数抑制噪声和干扰数据的影响,提出一种基于随机优化的非凸线性支持向量机快速学习方法,有效改进训练速度和预测精度.实验结果表明该方法降低学习时间,在MNIST数据集上较传统学习方法的训练时间降低4个数量级.同时在一定程度上改进预测速度,并有效提升分类器对噪声数据集的泛化性能.
推荐文章
适于大规模数据集的块增量学习算法: BISVM
支持向量机
块增量算法
大规模训练
基于资源分配网络的小数据集并行集成学习方法
资源分配网络
并行集成学习
增量学习
扩展卡尔曼滤波器
大规模数据集的多层聚类算法
谱聚类
聚类
图像分割
基于快速SVM的大规模网络流量分类方法
支持向量机
大规模流量分类
比特压缩
权重SVM
分类器
分类准确率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于随机优化的大规模噪声数据集快速学习方法
来源期刊 模式识别与人工智能 学科 工学
关键词 大规模机器学习 支持向量机 Ramp损失 随机梯度下降
年,卷(期) 2013,(4) 所属期刊栏目 研究与应用
研究方向 页码范围 366-373
页数 8页 分类号 TP181
字数 7516字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王家宝 解放军理工大学指挥信息系统学院 13 82 6.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
大规模机器学习
支持向量机
Ramp损失
随机梯度下降
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
模式识别与人工智能
月刊
1003-6059
34-1089/TP
16开
中国科学院合肥智能机械研究所安徽合肥董铺岛合肥1130信箱
26-69
1989
chi
出版文献量(篇)
2928
总下载数(次)
8
总被引数(次)
30919
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导