原文服务方: 计算机应用研究       
摘要:
针对传统谱聚类算法在聚类过程中所出现的高计算复杂度、噪声敏感,以及聚类簇形态偏斜等问题,结合当前大规模数据聚类的特点与需求,建立基于约束优化传播的改进大规模数据半监督式谱聚类模型.该模型利用先验成对点约束信息构建微型相似性矩阵,在此基础上采用Gabow算法提取该微型相似性矩阵所对应连通图的各强连通分支,继而提出面向各强连通分支的新型约束优化传播算法以获取整个数据集的点对相似度,最后通过奇异值分解并运用加速K-means算法获得大规模数据的聚类结果.在多个标准测试数据集上的实验表明,相比于该领域其他前期研究成果,该聚类模型具有更高的聚类准确率和更低的计算复杂度,更适合大规模数据的聚类应用.
推荐文章
大规模数据集的多层聚类算法
谱聚类
聚类
图像分割
基于流形距离的半监督近邻传播聚类算法
近邻传播聚类
流形学习
半监督聚类
成对约束信息
流形距离
主动纠错式半监督聚类社区发现算法
主动学习
纠错式半监督社区发现
K-means算法
成对约束
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于约束优化传播的改进大规模数据半监督式谱聚类算法
来源期刊 计算机应用研究 学科
关键词 谱聚类 大规模数据 点对约束 相似性传播 奇异值分解
年,卷(期) 2018,(5) 所属期刊栏目 算法研究探讨
研究方向 页码范围 1325-1330
页数 6页 分类号 TP391|TP301.6
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2018.05.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 冯海林 浙江农林大学信息工程学院 19 93 6.0 8.0
2 张旭尧 浙江农林大学信息工程学院 8 20 3.0 4.0
3 徐达宇 浙江农林大学信息工程学院 9 58 3.0 7.0
7 郁莹珺 浙江农林大学信息工程学院 3 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (26)
参考文献  (17)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(6)
  • 参考文献(2)
  • 二级参考文献(4)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(7)
  • 参考文献(1)
  • 二级参考文献(6)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(5)
  • 参考文献(5)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
谱聚类
大规模数据
点对约束
相似性传播
奇异值分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导