原文服务方: 成都大学学报(自然科学版)       
摘要:
提出了多目标监督聚类GA算法,即:根据样本的类标签有监督地将样本聚类,在每个类中根据样本属性的相似性有监督地聚成类簇.如果分属不同类标签的类簇出现相交,则相交类簇再次聚类,直到所有类簇均不相交.适应度矢量函数由类簇数和类内距离2个目标确定,类簇数和类簇中心由目标函数自动确定,从而类簇数和中心就不受主观因素的影响,并且保证了这2个关键要素的优化性质.预测分类时,删去单点类簇,并根据类簇号和离某个类簇中心距离的最近邻法则以及该类簇的类标签进行分类.算法模型采用c#实现,采用3个UCI数据集进行实例分析,实验结果表明,本算法优于著名的Native Bayes、Boost C4.5和KNN算法.
推荐文章
应用于彩色图像分割的半监督多目标进化聚类算法
彩色图像分割
半监督
多目标进化算法
最大熵
多目标聚类融合跟踪中的特征信息利用
数据关联
多目标跟踪
电子支援
融合
特征信息
基于半监督的多目标进化模糊聚类算法
多目标进化算法
图像分割
半监督
模糊聚类
相似性度量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多目标监督聚类GA研究
来源期刊 成都大学学报(自然科学版) 学科
关键词 多目标GA 监督聚类 类标签 最近邻法则
年,卷(期) 2013,(1) 所属期刊栏目
研究方向 页码范围 58-60,63
页数 4页 分类号 TP301.6
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邹书蓉 成都信息工程学院计算机学院 24 108 7.0 9.0
2 张洪伟 成都信息工程学院计算机学院 23 115 7.0 10.0
3 索飞 成都信息工程学院计算机学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (785)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多目标GA
监督聚类
类标签
最近邻法则
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
成都大学学报(自然科学版)
季刊
1004-5422
51-1216/N
16开
1982-01-01
chi
出版文献量(篇)
1966
总下载数(次)
0
总被引数(次)
8997
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导