基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对电子报图像信息量大、分类精度低和耗时多的特点,提出利用词袋模型提取图片的代表特征,并采用朴素贝叶斯分类器指导特征矩阵分类.结果表明,图像分类精度最大值能达到93%,分类处理时间约为3 s,充分满足了电子报图像分类和个性化推荐的准确性和实时性要求.
推荐文章
单尺度词袋模型图像分类方法
图像分类
单尺度SsIFT
视觉单词
词袋模型
基于词袋模型的林业业务图像分类
森林计测学
林业业务图像
图像分类
特征提取
BoW模型
支持向量机
词袋模型在高分遥感影像地物分类中的应用研究
高分遥感影像
词袋模型
地物分类
视觉词典
地物特征提取
样本表达
基于视觉词袋模型的遥感图像分类方法
遥感图像
分类
视觉词袋模型
面向对象
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于词袋模型的电子报图像分类方法研究
来源期刊 信阳师范学院学报(自然科学版) 学科 工学
关键词 数字报 图像分类 词袋模型 朴素贝叶斯分类器
年,卷(期) 2013,(1) 所属期刊栏目 应用技术研究
研究方向 页码范围 124-127
页数 4页 分类号 TP391.1
字数 2927字 语种 中文
DOI 10.3969/j.issn.1003-0972.2013.01.029
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蒋玲芳 河南省电力公司试验研究院 2 5 2.0 2.0
2 张伟 河南省电力公司试验研究院 4 17 2.0 4.0
3 司梦 华北电力大学电气工程学院 10 43 3.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (52)
共引文献  (14)
参考文献  (13)
节点文献
引证文献  (2)
同被引文献  (12)
二级引证文献  (11)
1973(1)
  • 参考文献(1)
  • 二级参考文献(0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(7)
  • 参考文献(0)
  • 二级参考文献(7)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(7)
  • 参考文献(1)
  • 二级参考文献(6)
2008(9)
  • 参考文献(1)
  • 二级参考文献(8)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(5)
  • 参考文献(5)
  • 二级参考文献(0)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(5)
  • 引证文献(0)
  • 二级引证文献(5)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
数字报
图像分类
词袋模型
朴素贝叶斯分类器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信阳师范学院学报(自然科学版)
季刊
1003-0972
41-1107/N
大16开
河南省信阳市
36-112
1981
chi
出版文献量(篇)
3455
总下载数(次)
4
总被引数(次)
13604
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导