基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在不平衡数据集中,多数类不一定是最优的,这一问题将会影响决策树的生成效果和分类预测的准确性,提出类置信度比例决策树算法,这种算法对类的大小不敏感.通过实验验证,这种算法比传统的决策树算法更具有优越性.
推荐文章
MapReduce环境下处理多类别不平衡数据的改进随机森林算法
MapReduce
随机森林
分层采样
HDDT决策树
选择集成
基于AdaBoost的类不平衡学习算法
机器学习
类不平衡学习
集成学习
SMOTE
数据清理技术
面向类不平衡数据集的软件缺陷预测模型
软件缺陷预测
类不平衡数据
特征选择
集成算法
不平衡数据集的分类方法研究
机器学习
不平衡数据
数据分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 不平衡数据集的决策树算法
来源期刊 河南师范大学学报(自然科学版) 学科 工学
关键词 不平衡数据集 类置信度比例 决策树 算法
年,卷(期) 2013,(2) 所属期刊栏目 计算机科学
研究方向 页码范围 154-157
页数 4页 分类号 TP311
字数 3615字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 范黎林 河南师范大学计算机与信息工程学院 18 83 6.0 8.0
2 王士斌 河南师范大学计算机与信息工程学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (8)
参考文献  (3)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
不平衡数据集
类置信度比例
决策树
算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南师范大学学报(自然科学版)
双月刊
1000-2367
41-1109/N
大16开
河南省新乡市建设东路
36-55
1960
chi
出版文献量(篇)
4665
总下载数(次)
13
总被引数(次)
17113
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导