基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对信号经验模态分解(EMD)过程中存在波形混叠现象,提出一种基于聚合经验模态分解(EEMD)和Hilbert边际谱相结合的方法对齿轮箱故障进行故障诊断.首先使用小波阈值分析对背景噪声较大的齿轮箱振动信号进行预处理,提高EEMD分解的精确度;其次对预处理信号进行分解,得到IMF分量,对比正常信号与故障信号的区别;最后对2种工况信号进行Hilbert变换并计算得到边际谱,确定故障信号的故障频率.研究表明该方法在避免EMD分解带来的模态混叠现象方面具有可行性,能提高齿轮箱故障诊断的准确率.
推荐文章
基于改进LMD算法的齿轮箱故障诊断研究
齿轮箱
故障诊断
有理样条插值
改进局部均值分解
基于小波包与Hilbert解调谱的矿用齿轮箱故障诊断
矿用齿轮箱
小波包分解
Hilbert解调
基于BP网络的舰炮齿轮箱故障诊断方法
信息处理技术
BP网络
故障诊断
齿轮箱
基于MED-SVM的齿轮箱故障诊断方法
最小熵反褶积
支持向量机
特征提取
交叉验证
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进的HHT边际谱齿轮箱故障诊断
来源期刊 煤矿机械 学科 工学
关键词 聚合经验模态分解 Hilbert边际谱 小波降噪 故障诊断
年,卷(期) 2013,(10) 所属期刊栏目 故障·诊断
研究方向 页码范围 251-254
页数 4页 分类号 TB112
字数 2456字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 潘宏侠 中北大学机械工程与自动化学院 359 2630 23.0 34.0
2 马百雪 中北大学机械工程与自动化学院 7 19 4.0 4.0
3 杨素梅 中北大学机械工程与自动化学院 7 15 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (67)
共引文献  (207)
参考文献  (9)
节点文献
引证文献  (6)
同被引文献  (16)
二级引证文献  (24)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(7)
  • 参考文献(0)
  • 二级参考文献(7)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(6)
  • 参考文献(0)
  • 二级参考文献(6)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(10)
  • 参考文献(0)
  • 二级参考文献(10)
2005(7)
  • 参考文献(1)
  • 二级参考文献(6)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(9)
  • 参考文献(2)
  • 二级参考文献(7)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(4)
  • 参考文献(3)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(4)
  • 引证文献(2)
  • 二级引证文献(2)
2016(3)
  • 引证文献(1)
  • 二级引证文献(2)
2017(8)
  • 引证文献(3)
  • 二级引证文献(5)
2018(10)
  • 引证文献(0)
  • 二级引证文献(10)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
聚合经验模态分解
Hilbert边际谱
小波降噪
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
煤矿机械
月刊
1003-0794
23-1280/TD
大16开
哈尔滨市古香街30号
14-38
1980
chi
出版文献量(篇)
21080
总下载数(次)
49
总被引数(次)
87205
论文1v1指导