基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
We present a novel formulation, based on the latest advancement in polynomial system solving via linear algebra, for identifying limit cycles in general n-dimensional autonomous nonlinear polynomial systems. The condition for the existence of an algebraic limit cycle is first set up and cast into a Macaulay matrix format whereby polynomials are regarded as coefficient vectors of monomials. This results in a system of polynomial equations whose roots are solved through the null space of another Macaulay matrix. This two-level Macaulay matrix approach relies solely on linear algebra and eigenvalue computation with robust numerical implementation. Furthermore, a state immersion technique further enlarges the scope to cover also non-polynomial (including exponential and logarithmic) limit cycles. Application examples are given to demonstrate the efficacy of the proposed framework.
推荐文章
Weng Cycle峰型开发模型
数学模型
油气开发
决策
图版
高含水
应用
The morphological characteristics of gully systems and watersheds in Dry-Hot Valley, SW China
Morphological characteristics
Quantitative relationships
Gully system
Watershed
Dry-Hot Valley
Delayed SubHopf-Fold/Fold Cycle簇发振荡及其动力学转迁
分岔滞后
余维-2分岔
簇发振荡
van der Pol-Duffing方程
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Limit Cycle Identification in Nonlinear Polynomial Systems
来源期刊 应用数学(英文) 学科 数学
关键词 LIMIT Cycle IDENTIFICATION POLYNOMIAL Representation ROOTS Finding Macaulay Matrix IMMERSION
年,卷(期) 2013,(9) 所属期刊栏目
研究方向 页码范围 19-26
页数 8页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LIMIT
Cycle
IDENTIFICATION
POLYNOMIAL
Representation
ROOTS
Finding
Macaulay
Matrix
IMMERSION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学(英文)
月刊
2152-7385
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1878
总下载数(次)
0
总被引数(次)
0
论文1v1指导