基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于MapReduce模型进行Map和Reduce操作时需要频繁的CPU计算,面对大量并行计算任务时,CPU占用率甚至达到百分之百.而GPU有比CPU更好的并行计算能力,适度使用GPU,可降低了CPU的占用时间,又能用GPU的参与来平衡系统的计算能力.论文结合GPU技术和MapReduce技术的不同优势,设计出一种基于MapReduce和GPU双重并行计算的云计算模型.通过理论建模与实验验证,结果表明此模型可实现多GPU的MapReduce任务并行处理,提高了高性能计算的性能.
推荐文章
基于GPU-Hadoop的并行计算框架研究与实现
云计算
图形处理器
并行计算
Hadoop
海洋流场可视化
MapReduce
基于GPU的高性能并行计算技术
并行处理
高性能计算
脉冲压缩
基于MapReduce模型的并行科学计算
并行编程模型
科学计算
MapReduce
云计算环境下基于并行计算熵的负载均衡算法
云计算
虚拟机
负载均衡
物理节点
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MapReduce和GPU双重并行计算的云计算模型
来源期刊 计算机与数字工程 学科 工学
关键词 云计算 MapReduce模型 GPU 高性能计算
年,卷(期) 2013,(3) 所属期刊栏目 算法与分析
研究方向 页码范围 333-336
页数 4页 分类号 TP393
字数 3877字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 袁家斌 南京航空航天大学计算机科学与技术学院 62 593 10.0 23.0
2 曾青华 南京航空航天大学计算机科学与技术学院 3 44 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (83)
参考文献  (8)
节点文献
引证文献  (13)
同被引文献  (10)
二级引证文献  (14)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(3)
  • 引证文献(3)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(8)
  • 引证文献(5)
  • 二级引证文献(3)
2018(7)
  • 引证文献(1)
  • 二级引证文献(6)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
云计算
MapReduce模型
GPU
高性能计算
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导