基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对计算机辅助诊断(CAD)中学习算法处理非平衡数据时,分类器预测具有大类样本的分类误差小,而稀有类样本的分类误差大的倾向性分类问题,提出基于反向k近邻的欠采样新方法.通过去除大类样本集中的噪声及冗余样本、保留具有类别代表性且可靠的样本作为有效样本以此平衡训练样本集,解决了欠采样引起的类别信息的丢失问题.基于UCI Breast-cancer数据集的仿真实验结果表明,该方法解决了非平衡学习问题的有效性,进一步的横向评测对比显示该算法性能显著优于其他同类算法.
推荐文章
小波在乳腺癌计算机辅助诊断中的应用综述
小波
乳腺X影像
计算机辅助诊断
计算机辅助系统在诊断乳腺良恶性肿瘤中的应用
计算机辅助诊断
超声
乳腺肿瘤
特征提取
SVM分类器
基于深度学习的癌症计算机辅助分类诊断研究进展
深度学习
肺癌
乳腺癌
计算机辅助分类诊断
医学影像
基于深度学习的人工智能技术在乳腺癌筛查及影像诊断中的应用进展
乳腺X线摄影
乳腺癌筛查
深度学习
人工智能辅助诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 计算机辅助乳腺癌诊断中的非平衡学习技术
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 计算机辅助诊断 非平衡学习 支持向量机 反向k近邻 欠采样
年,卷(期) 2013,(1) 所属期刊栏目 计算机技术、电信技术
研究方向 页码范围 1-7
页数 7页 分类号 TP391.7
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2013.01.001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (30)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(2)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(7)
  • 参考文献(3)
  • 二级参考文献(4)
2007(5)
  • 参考文献(2)
  • 二级参考文献(3)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
计算机辅助诊断
非平衡学习
支持向量机
反向k近邻
欠采样
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导