基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对以二分图形式发布的社会网络隐私泄露问题,提出了一种面向敏感边识别攻击的社会网络二分图匿名方法。在已有k-安全分组的理论基础上,结合二分图的稀疏性和敏感边识别攻击形式,分别提出了正单向、逆单向以及完全(c1,c2)-安全性原则,并在此基础上,形式化地定义了一类抗敏感边识别攻击的社会网络二分图安全匿名问题;同时,还提出了一种基于k-频繁子图聚类的二分图划分算法和一种基于二分图(c1,c2)-安全性的匿名算法来保证发布二分图的安全性。实验结果表明,该算法在与已有方法相当时间开销的前提下,能产生更小的信息损失度,有效地抵制了敏感边识别攻击,实现了二分图的安全发布。
推荐文章
基于二分K-均值的SVM决策树自适应分类方法
二分K-均值
支持向量机决策树
降维
自适应算法
基于差分演化的K-均值聚类算法
聚类
差分演化算法
K-均值
基于图的K-均值聚类法中初始聚类中心选择
数据聚类
簇类
无向图
连通分支
基于d-邻域子图匿名的社会网络隐私保护
社会网络
隐私保护
d-邻域子图
k-匿名
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于k-频繁子图聚类的二分图匿名方法
来源期刊 计算机工程与应用 学科 工学
关键词 社会网络 隐私匿名 聚类 敏感边识别攻击 k-频繁子图
年,卷(期) 2013,(17) 所属期刊栏目
研究方向 页码范围 18-23,37
页数 7页 分类号 TP309
字数 7936字 语种 中文
DOI 10.3778/j.issn.1002-8331.1303-0277
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张健沛 哈尔滨工程大学计算机科学与技术学院 156 1356 19.0 28.0
2 杨静 哈尔滨工程大学计算机科学与技术学院 178 2073 24.0 37.0
3 吴宏伟 哈尔滨工程大学计算机科学与技术学院 11 103 5.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (2)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
社会网络
隐私匿名
聚类
敏感边识别攻击
k-频繁子图
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导