基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的核方法如支持向量机在迭代时间、推广能力和鲁棒性等方面不够理想.针对上述问题,给出了基于半无限线性规划(SILP)的多核学习算法,并将其应用在UCI机器学习数据库的二分类和多分类数据集中.该算法用列生成和块算法的方法,固定次优参数并确定工作集后求解优化问题,提高了算法的速度.实验表明,该算法的分类效果比传统支持向量机算法结果更优,具有更好的鲁棒性和普遍适用性.
推荐文章
基于 Boosting框架的非稀疏多核学习方法
集成学习
非稀疏多核学习
弱分类器
基本核
基于多核学习方法的前瞻性记忆脑电识别
前瞻性记忆
样本熵
近似熵
AR系数
多核学习方法
基于优化的多核学习方法的Web文本分类的研究
支持向量机
数据挖掘
多核学习
Web文本分类
集成学习在短文本分类中的应用研究
短文本分类
机器学习
深度学习
集成学习
Bagging
Stacking
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多核学习方法在分类中的应用研究
来源期刊 科学技术与工程 学科 工学
关键词 核方法 多核学习 模式分类
年,卷(期) 2013,(32) 所属期刊栏目 论文
研究方向 页码范围 9531-9535
页数 5页 分类号 TP181
字数 4252字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李军 兰州交通大学自动化与电气工程学院 70 490 13.0 19.0
2 崔清亮 兰州交通大学自动化与电气工程学院 1 8 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (104)
参考文献  (6)
节点文献
引证文献  (8)
同被引文献  (4)
二级引证文献  (0)
1909(1)
  • 参考文献(0)
  • 二级参考文献(1)
1950(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
核方法
多核学习
模式分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科学技术与工程
旬刊
1671-1815
11-4688/T
大16开
北京市海淀区学院南路86号
2-734
2001
chi
出版文献量(篇)
30642
总下载数(次)
83
总被引数(次)
113906
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导