基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The growth plate is a thin layer of cartilage sandwiched between epiphyseal and metaphyseal bone and is the location of active bone growth during childhood. It is subjected to large compressive and shear forces while protecting its resident chondrocytes from damage. We believe that computational modeling can help us better understand how the macro-scale loads are transmitted to micro-scale stresses and strains within the growth plate cartilage. As a first step in this process we analyzed the mechanical response of compression experiments performed on bovine bone/growth plate/bone samples. We endeavored to estimate the modulus of elasticity of the growth plate itself by simulating the compression experiments of these specimens using the finite element method. It is shown that when the growth plate in the compression specimens was modeled as a flat layer, the state of stress in the cartilage was triaxial and non-uniform with the hydrostatic stress being much greater than the octahedral shear stress over most of the central region of the growth plate test samples. The computational models accounted for variations in the average cartilage thickness, the non-uniaxial, non-uniform and triaxial state of stress in the thin cartilage layer, and for the estimated extrinsic compliance resulting from compression of the variable heights of bone on either side of the growth plate cartilage. However, due to lack of information on the internal structure of each sample, the models did not account for the variations in the non-flat topography of the growth plates. The models also did not include the calcified cartilage layer. Further model development is recommendedin order to determine the degree to which accounting for the complex growth plate topography influences the predicted cartilage modulus of elasticity.
推荐文章
Test the topographic steady state in an active mountain belt
Taiwan
Uplift
Denudation
River profile
Sediment yield
In-situ 10Be
State of rare earth elements in the rare earth deposits of Northwest Guizhou, China
Kaolinite
Clay rocks
Rare earth deposits
Element existence state
Information extraction
Northwest Guizhou Province
Stress-XP重音理论与汉语三大特殊句式分析
句子重音
Stress-XP理论
汉语特殊句式
最大投射
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 On the State of Stress in the Growth Plate under Physiologic Compressive Loading
来源期刊 生物物理学期刊(英文) 学科 医学
关键词 Growth PLATE PHYSIS CARTILAGE Mechanical Properties FINITE ELEMENT Analysis
年,卷(期) swwlxqkyw_2014,(1) 所属期刊栏目
研究方向 页码范围 13-21
页数 9页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Growth
PLATE
PHYSIS
CARTILAGE
Mechanical
Properties
FINITE
ELEMENT
Analysis
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
生物物理学期刊(英文)
季刊
2164-5388
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
80
总下载数(次)
0
论文1v1指导