锂离子电池组容量和内部参数随温度变化明显,在不同温度下准确估计电池电荷状态(state of charge,SOC)是电动汽车电池管理系统研究的关键技术.基于Thevenin模型,采用无损卡尔曼滤波(unscented Kalman filtering,UKF)实现不同温度和不同放电电流条件下对锂离子电池组SOC的估计.实验研究表明,UKF算法适应不同放电电流下的电池SOC估计.随着温度降低,虽然UKF方法对锂离子电池组SOC估计的收敛速度变慢,但对初始误差有较强的修正作用,且有较高的稳态精度.因此,UKF方法适合不同温瘦和放电电流下对锂离子电池组SOC的估计.