基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
滚动轴承是机械设备中最常用的零件之一,它能否正常运行关系到整台机器的安全,所以对滚动轴承进行故障诊断具有重大的意义。本文搭建状态监测系统平台采集正常轴承和故障轴承的振动信号,根据特征选取原则,提取时域和频域特征并将特征值归一化。根据已知状态的轴承特征值训练BP神经网络,之后利用已建立的网络识别未知状态的轴承,经过试验验证,该方法得到了非常好的监测效果。
推荐文章
基于概率神经网络的滚动轴承故障诊断
PNN网络
BP神经网络
故障诊断
滚动轴承
基于小波包和改进BP神经网络的滚动轴承故障诊断方法
小波包
BP神经网络
Levenberg?Marquardt
滚动轴承
故障诊断
基于卷积神经网络的滚动轴承故障诊断方法
深度学习
卷积神经网络
特征自动提取
轴承故障诊断
高阶模糊BP神经网络及其在滚动轴承故障诊断中的应用
高阶模糊BP神经网络
隶属函数
二阶BP算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的滚动轴承故障监测研究
来源期刊 机械工程与技术 学科 工学
关键词 滚动轴承 故障监测 特征提取 BP神经网络
年,卷(期) 2014,(2) 所属期刊栏目
研究方向 页码范围 57-66
页数 10页 分类号 TP39
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 傅攀 西南交通大学机械工程学院 78 545 12.0 18.0
2 张尔卿 西南交通大学机械工程学院 8 59 5.0 7.0
3 廖术娟 西南交通大学机械工程学院 2 15 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
滚动轴承
故障监测
特征提取
BP神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械工程与技术
双月刊
2167-6631
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
402
总下载数(次)
3
总被引数(次)
0
论文1v1指导