基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决传统模式识别方法学习结果过于复杂且难以解读的问题,提出了一种基于遗传算法的演化学习超网络模型.与传统的基于梯度下降和超边替代的超网络学习算法不同,演化学习超网络模型在其学习过程中引入了遗传算法.将超网络的超边集合划分成多个子种群;对子种群中的个体进行选择、交叉和变异等遗传操作,并对每一代种群进行子种群间优秀个体的迁移.每个子种群并行执行演化操作,完成演化后得到一个具有决策能力的超网络分类器.利用演化超网络对急性白血病、肺癌和前列腺数据集进行分类试验.结果表明,演化学习超网络对3个数据集的分类准确率分别为96.21%,99.26%,96.09%.所提出的方法与其他传统的模式识别方法相比,具有更高的分类准确率,而且其学习结果具有很好的可读性,有利于挖掘与癌症诊断密切相关的基因对高阶关联关系.
推荐文章
基于演化超网络的DNA微阵列数据分类方法
癌症分子分型
信噪比基因选择
演化超网络
DNA微阵列
用于微阵列数据分类的子空间融合演化超网络
模式识别
微阵列数据分类
演化超网络
子空间
过拟合
基于残差超网络的DNA微阵列数据分类
超网络
初始化
残差算法
稳定性
收敛性
一种基于微阵列数据的集成分类方法
微阵列数据
主成分分析
特征选择
支持向量机
集成分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于演化学习超网络的微阵列数据分类
来源期刊 江苏大学学报(自然科学版) 学科 工学
关键词 微阵列数据分类 模式识别 机器学习 超网络 遗传算法
年,卷(期) 2014,(1) 所属期刊栏目
研究方向 页码范围 56-62
页数 7页 分类号 TP391.4
字数 5261字 语种 中文
DOI 10.3969/j.issn.1671-7775.2014.01.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王进 重庆邮电大学计算智能重庆市重点实验室 50 202 8.0 12.0
2 孙开伟 重庆邮电大学计算智能重庆市重点实验室 10 38 3.0 6.0
3 黄萍丽 重庆邮电大学计算智能重庆市重点实验室 1 3 1.0 1.0
4 蔡通 重庆邮电大学计算智能重庆市重点实验室 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (108)
共引文献  (30)
参考文献  (11)
节点文献
引证文献  (3)
同被引文献  (12)
二级引证文献  (5)
1975(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(6)
  • 参考文献(0)
  • 二级参考文献(6)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(7)
  • 参考文献(0)
  • 二级参考文献(7)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(9)
  • 参考文献(0)
  • 二级参考文献(9)
2005(11)
  • 参考文献(0)
  • 二级参考文献(11)
2006(17)
  • 参考文献(0)
  • 二级参考文献(17)
2007(8)
  • 参考文献(1)
  • 二级参考文献(7)
2008(16)
  • 参考文献(0)
  • 二级参考文献(16)
2009(10)
  • 参考文献(1)
  • 二级参考文献(9)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
微阵列数据分类
模式识别
机器学习
超网络
遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
江苏大学学报(自然科学版)
双月刊
1671-7775
32-1668/N
大16开
江苏省镇江市梦溪园巷30号
28-83
1980
chi
出版文献量(篇)
2980
总下载数(次)
2
总被引数(次)
31026
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导