作者:
原文服务方: 计算机应用研究       
摘要:
针对微阵列基因表达数据高维小样本、高冗余且高噪声的问题,提出一种基于FCBF特征选择和集成优化学习的分类算法FICS-EKELM.首先使用快速关联过滤方法FCBF滤除部分不相关特征和噪声,找出与类别相关性较高的特征集合;其次,运用抽样技术生成多个样本子集,在每个训练子集上利用改进乌鸦搜索算法同步实现最优特征子集选择和核极限学习机KELM分类器参数优化;然后基于基分类器构建集成分类模型对目标数据进行分类识别;此外运用多核平台多线程并行方式进一步提高算法计算效率.在六组基因数据集上的实验结果表明,该算法不仅能用较少特征基因达到较优的分类效果,并且分类结果显著高于已有和相似方法,是一种有效的高维数据分类方法.
推荐文章
集成数据选择特征基因
集成数据
基因选择
分类
基于边缘分类能力的动态集成选择算法
动态集成选择
排序聚类
分类器能力
bagging
基于邻域粗糙集和概率神经网络集成的基因表达谱分类方法
分类
基因表达谱
概率神经网络集成
邻域粗糙集
基于ReliefF和蚁群算法的特征基因选择方法
DNA微阵列数据
ReliefF算法
蚁群算法
特征选择
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于FCBF特征选择和集成优化学习的基因表达数据分类算法
来源期刊 计算机应用研究 学科
关键词 特征选择 集成学习 微阵列基因表达数据 乌鸦搜索算法 核极限学习机
年,卷(期) 2019,(10) 所属期刊栏目 算法研究探讨
研究方向 页码范围 2986-2991
页数 6页 分类号 TP183
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2018.04.0248
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马超 深圳信息职业技术学院数字媒体学院 10 7 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (4)
参考文献  (22)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(8)
  • 参考文献(4)
  • 二级参考文献(4)
2017(7)
  • 参考文献(6)
  • 二级参考文献(1)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
特征选择
集成学习
微阵列基因表达数据
乌鸦搜索算法
核极限学习机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导