作者:
原文服务方: 现代电子技术       
摘要:
为了提高图像分类的效果,考虑当前方法准确实现图像分类的难题,提出粒子群优化算法选择特征的运动图像分类方法.对当前运动图像分类方法的研究现状进行分析,提取不同类型的图像,并采用粒子群优化算法选择最优特征,组成特征向量,将特征向量机作为神经网络的输入,实现运动图像的分类.采用具体图像分类实验进行验证,结果表明,该方法可以描述不同运动图像的类别信息,缩小图像的分类误差,避免其他图像分类方法的缺陷,提高了图像的整体分类正确率.
推荐文章
基于分类思想的改进粒子群优化算法
粒子群优化
参数改进
适度值
适度值均值
适度值标准差
粒子分类
有效经验
基于异步粒子群优化算法的图像分割方法
图像分割
粒子群优化算法
异步
更新顺序
使用粒子群算法进行特征选择及对支持向量机参数的优化
支持向量机
参数优化
粒子群算法
2进制编码
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 粒子群优化算法选择特征的运动图像分类
来源期刊 现代电子技术 学科
关键词 运动图像 特征选择 粒子群算法 图像分类
年,卷(期) 2017,(17) 所属期刊栏目 信号与图像处理
研究方向 页码范围 47-50
页数 4页 分类号 TN911.73-34|TP317.4
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2017.17.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴雪 5 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (50)
共引文献  (123)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(9)
  • 参考文献(2)
  • 二级参考文献(7)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(5)
  • 参考文献(3)
  • 二级参考文献(2)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
运动图像
特征选择
粒子群算法
图像分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导